LECTURE NOTES 2-3: CALCULATING LIMITS USING THE LIMIT LAWS

REVIEW:

1. What does it mean to write $\lim_{x\to a} f(x) = L$? 2. Given f(x) and a how did we find the limit L or show that it doesn't exist?

GOALS:

- Learn a whole bunch of *general principles* about calculating limits.
- Correct and careful application of these principles will allow us to (a) avoid the tedious calculation from Section 2-2 and (b) avoid the mistakes and pitfalls of relying on numerical approximations.

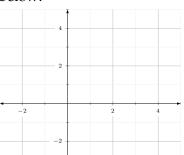
Limit Laws (Table 1)

In the rules below c is a constant and $\lim_{x\to a} f(x)$ and $\lim_{x\to a} (x)$ both exist.

$x \rightarrow a$ $x \rightarrow a$	
formal notation	in English sentences
1. $\lim_{x \to a} [f(x) + g(x)] =$	1.
2. $\lim_{x \to a} [f(x) - g(x)] =$	2.
$3. \lim_{x \to a} [cf(x)] =$	3.
4. $\lim_{x \to a} [f(x) \cdot g(x)] =$	4.
5. $\lim_{x \to a} [f(x)/g(x)] =$	5.

EXAMPLE 1:

1. Graph f(x) = x and g(x) = 3.8 on the axes below:



2. Use the graphs to evaluate the limits below: $\lim_{x\to 2} f(x) = \underline{\hspace{1cm}}$

$$\lim_{x \to 2} g(x) = \underline{\qquad}$$

- 3. Do the limits $\lim_{x\to 2} f(x)$ and $\lim_{x\to 2} g(x)$ exist? Why?
- 4. Use the limit laws and part 2. above to evaluate $\lim_{x\to 2}[8x-3.8]$. Justify your steps.

5. Use the limit laws and part 2. above to evaluate $\lim_{x\to 2} x^5$. Justify your steps.

Limit Laws (Table 2)

In the rules below c is a constant, n is a positive integer, and $\lim_{x\to a} f(x)$ exists.

$$1. \lim_{x \to a} (f(x))^n =$$

$$2. \lim_{x \to a} c =$$

$$3. \lim_{x \to a} x =$$

$$4. \lim_{x \to a} x^n =$$

$$5. \lim_{x \to a} \sqrt[n]{x} =$$

$$6. \lim_{x \to a} \sqrt[n]{f(x)} =$$

EXAMPLE 2: Evaluate $\lim_{x\to -3} \frac{\sqrt{x^2-5}}{4-2x}$ and justify your steps.

PRACTICE PROBLEM: 1 Let $f(x) = \frac{x^2+1}{2x-4}$.

a. Find $\lim_{x \to -1} f(x)$.

b. Find f(-1)

c. Find $\lim_{x \to 2^+} f(x)$.

d. Find f(2)

e. **T or F**: $\lim_{x \to -1} f(x) = f(-1)$.

f. **T or F**: $\lim_{x\to 2} f(x) = f(2)$.

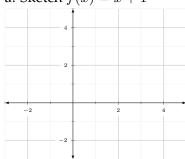
g. Fill in the blank in the statement of the DIRECT SUBSTITUTION PROPERTY:

If f(x) is a polynomial or rational function and a is ______, then

$$\lim_{x \to a} f(x) =$$

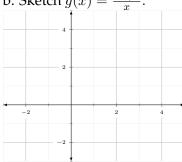
PRACTICE PROBLEM 2:

a. Sketch f(x) = x + 1



- c. Find f(0).
- e. Find $\lim_{x\to 0} f(x)$.

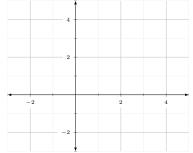
b. Sketch $g(x) = \frac{x^2 + x}{x}$.



- d. Find g(0).
- f. Find $\lim_{x\to 0} g(x)$.
- g. For what *x*-values is f(x) = g(x)? For what *x*-values is $f(x) \neq g(x)$?
- h. Explain how $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x)$ even though $f(0) \neq g(0)$.

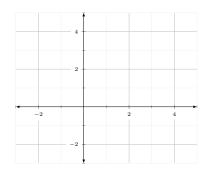
PRACTICE PROBLEM 3: Sketch the graph of each function below and find the indicated limits, if they exists. If the limits do not exist, explain why they do not exist.

a. Sketch $f(x) = \begin{cases} e^x - 1 & x < 0 \\ 2 & x = 0 \\ x^2 & x > 0 \end{cases}$



- $\lim_{x \to -2} f(x).$
- $\lim_{x \to 0} f(x).$

b. $g(x) = \frac{|x|}{x}$.



- $\lim_{x \to 3} g(x).$
- $\lim_{x \to 0} g(x).$

In general, describe the relationship between the TWO-sided limit and each of the ONE-sided limits.