Lecture Notes 2-3: Calculating Limits Using the Limit LAWS

REVIEW:

1. What does it mean to write $\lim _{x \rightarrow a} f(x)=L$? 2. Given $f(x)$ and a how did we find the limit L or show that it doesn't exist?

GOALS:

- Learn a whole bunch of general principles about calculating limits.
- Correct and careful application of these principles will allow us to (a) avoid the tedious calculation from Section 2-2 and (b) avoid the mistakes and pitfalls of relying on numerical approximations.

Limit Laws (Table 1)

In the rules below c is a constant and $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a}(x)$ both exist.
formal notation in English sentences

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=$
2.
3. $\lim _{x \rightarrow a}[f(x)-g(x)]=$
4.
5. $\lim _{x \rightarrow a}[c f(x)]=$
6.
7. $\lim _{x \rightarrow a}[f(x) \cdot g(x)]=$
8.
9. $\lim _{x \rightarrow a}[f(x) / g(x)]=$
10.

EXAMPLE 1:

1. Graph $f(x)=x$ and $g(x)=3.8$ on the axes below:
2. Use the graphs to evaluate the limits below: $\lim _{x \rightarrow 2} f(x)=$ \qquad

3. Do the limits $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow 2} g(x)$ exist? Why?
4. Use the limit laws and part 2. above to evaluate $\lim _{x \rightarrow 2}[8 x-3.8]$. Justify your steps.
5. Use the limit laws and part 2. above to evaluate $\lim _{x \rightarrow 2} x^{5}$. Justify your steps.

Limit Laws (Table 2)

In the rules below c is a constant, n is a positive integer, and $\lim _{x \rightarrow a} f(x)$ exists.

1. $\lim _{x \rightarrow a}(f(x))^{n}=$
2. $\lim _{x \rightarrow a} c=$
3. $\lim _{x \rightarrow a} x=$
4. $\lim _{x \rightarrow a} x^{n}=$
5. $\lim _{x \rightarrow a} \sqrt[n]{x}=$
6. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=$

EXAMPLE 2: Evaluate $\lim _{x \rightarrow-3} \frac{\sqrt{x^{2}-5}}{4-2 x}$ and justify your steps.

PRACTICE PROBLEM: 1 Let $f(x)=\frac{x^{2}+1}{2 x-4}$.
a. Find $\lim _{x \rightarrow-1} f(x)$.
b. Find $f(-1)$
c. Find $\lim _{x \rightarrow 2^{+}} f(x)$.
d. Find $f(2)$
e. T or $\mathbf{F}: \lim _{x \rightarrow-1} f(x)=f(-1)$.
f. T or $\mathbf{F}: \lim _{x \rightarrow 2} f(x)=f(2)$.
g. Fill in the blank in the statement of the DIRECT SUBSTITUTION PROPERTY:

If $f(x)$ is a polynomial or rational function and a is \qquad , then

$$
\lim _{x \rightarrow a} f(x)=
$$

Practice Problem 2:

a. Sketch $f(x)=x+1$

b. Sketch $g(x)=\frac{x^{2}+x}{x}$.

d. Find $g(0)$.
f. Find $\lim _{x \rightarrow 0} g(x)$.
c. Find $f(0)$.
e. Find $\lim _{x \rightarrow 0} f(x)$.
g. For what x-values is $f(x)=g(x)$? For what x-values is $f(x) \neq g(x)$?
h. Explain how $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} g(x)$ even though $f(0) \neq g(0)$.

Practice Problem 3: Sketch the graph of each function below and find the indicated limits, if they exists. If the limits do not exist, explain why they do not exist.
a. Sketch $f(x)= \begin{cases}e^{x}-1 & x<0 \\ 2 & x=0 \\ x^{2} & x>0\end{cases}$
b. $g(x)=\frac{|x|}{x}$.

$\lim _{x \rightarrow-2} f(x)$.
$\lim _{x \rightarrow 3} g(x)$.
$\lim _{x \rightarrow 0} f(x)$.

$$
\lim _{x \rightarrow 0} g(x)
$$

In general, describe the relationship between the TWO-sided limit and each of the ONE-sided limits.

